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Abstract 

L.  S.  Shapley has  found a necessary and sufficient  condition 
for the non-emptiness  of the core of a characteristic function n- 
person game stating that  the core is non-empty if and only  if a 
certain system of linear inequalitips  on minimal balanced col- 
lection of finite  sets  is  consistent.     Using some well known con- 

structs of linear programming, we associate to any n-person game 
two dual linear programming problems"in which the constraint   set 
of the primal includes  the core of the game, and charactefize 
the non-emptiness  of the  core in terms  of properties  of dual 

optimal solutions  of these problems.    We then prove the Shapley 
conjecture on sharpness  of the set  of proper minimal balanced 

Inequalities with respect  to core  feasibility of proper n-person 
games.     Using the Parkas-Minkowski Theorem, we obtain a charac- 
terization of redundant  inequalities with respect to core  feasi- 
bility ar.>j express  the rate of growth of the game as a sequence 
of lower bounds   for successive game values   corresponding to in- 
creasing subsets  of the  collection of    N    players, which vitiates 
the possibility of constraint redundancy.     If all game values  are 
non-negative,  the characteristic growth rate induces a partial 
ordering on game values  corresponding to subsets of    N. 

11 
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1.  Introduction 

Recently L. S. Shapley [4] found a necessary and sufficient 

condition for the non-emptiness of the core of a characteristic 

function n-person game, which states that the core is non-empty 

if and only if a certain system of linear inequalities on mini- 

mal balanced collections of finite sets is consistent. One ap- 

plication of this result is that if all minimal balanced Collec- 

tions of order n are known, then the question of non-empti- 

ness of the core of an n-person game can be answered by examin- 

ing whether each minimal balanced collection satisfies its respec- 

tive balanced linear Inequality or not.  Following in this direc- 

tion, Peleg [5] has set forth an Inductive combinatorial method 

for constructing minimal balanced collections of order n+1 

from those of order n.  Thus, following these lines, it would 

appear that one would need to construct minimal balanced collec- 

tions of increasing order ad Inflnltum in order to investigate 

questions such as non-emptiness of a given core or relations 

between types of incidence matrices and cores, etc. 

Our approach here to these and other matters Is quite dif- 

ferent.  Using some well known constructs of linear programming, 

such as the theorem on the association of extreme points with 

linearly independent sets [1] and the opposite sign theorem [1], 

we reprove some of the results of Shapley [^O on the relations 

between balanced sets, minimal balanced sets, and extreme points 

in the space of weight vectors for an appropriate Incidence 
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matrix. We associate to any n-person game two dual linear pro- 

gramming problems in which the constraint set of the primal 

problem includes "the core of the gam'e, and characterize the non- 

emptiness of the cere in terms of properties of dual optimal 

solutions of these problems. We also prove the Shapley conjec- 

ture (see [^], p. 15) on sharpness of the set of proper minimal 

balanced inequalities with respect to determining whether,the 

core, of a proper n-person game is empty or not. Using the Farkas- 
Minkowskl Theorem, we characterize redundant inequalities with 
respect to core feasibility, and characterize the growth rate of 
the game which vitiates constraint redundancy. 
2.  Games, Balanced Sets, and Solutions Space for an Appropriate 

Incidence Matrix 

Let N = {l,2,...,n}. Following Shapley [3] a game v is 

a function from the subsets of N to the reals such that v(y)-0. 

The core of v is defined to be the set of all additive functions 

x such that x(i) >_ v(s), all S-N and x(h) = V(N).  A set 

{Si,...,S } of distinct, non-empty, proper subsets of N is 

said to be balanced if there exists positive weights IüI,...,UJ 

such that   I      w. - 1 all ieN.   This definition has been 
J/leSj J 

succinctly stated in terms of an incidence matrix associated 

with this set of subsets by Peleg [5].  A minimal balanced set 

is one that includes no other balanced set. For our purposes, 

however, we introduce one incidence matrix Y corresponding to 

all subsets of N except 0 and *> 1.2,3, ••• >n?r. We assume that 

'See Shapley [4] page 1. 
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all of these subsets are Indexed In a convenient way, say, list- 

ing subsets of one element first, then those containing two ele- 

ments,  etc.    Thus, we obtain an indexing    Si,  S2,...,S _        and 
2n-2 

i     US4 i ^     ,   ...  .    .  ..n 

;i 

1/ 

we may  define    yH.  =   { for    1  < i  < 2-2    and 
ij o       J/s_ -      - 

1 1 J 1 n' Let Y denote this matrix of 2n-2 rows and n 

columns. Let A - {u|w1Y = ef, Cü > 0}. Observe that eacH row 

vector, FL, of Y corresponds precisely to one and only one 

subset  of    N. 

Proposition 1    A  is  spanned by its  extreme points  and hence is  a 

convex polyhedron.     [Lemma 2, Shapley   [3]). 

•    2n-2 

Proof    We may write     A=   {u)|£    R.w.   ^e,  UJ>_0}.    Since each    R.. 1=1    ii 

is  non-zero and non-negative,  any non-trivial expression  of the 

zero vector,  say      R.. a.   =0 implies  some    a    and    a    are  of op- 

2/ posite  sign.     Hence  by the  opposite  sign theorem, A    is  spanned 

by  its  extreme points.     Since there  are  only  finitely many of 

these,     A    is  a convex polyhedron. 

Proposition 2      There  is  a one-to-one  correspondence between all 

3/ minimal balanced sets and extreme points of A. 

Proof Given any extreme point ueA,  let I ~ | i iü).> 0}. 

1/See Peleg [5], page 155 

2/ See  Charnes-Cooper   [1]  page  282. 

^See Shapley  [*0 page  11. 
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Then by the  theorem on the  association of extreme points with 

linearly independent sets,       the  set     (RJiel)     is  linearly in- 

dependent  and hence  contains no proper subset which is  also in 

A,    and therefore  corresponds  to  a minimal balanced collection. 

On the other hand given any minimal balanced collection with 

weights     (w.   >   0|iel},    the  associated rows must  be  linearly 

independent,   for otherwise  some  subset of these  rows  is  also 

feasible.     Hence     {u.   > 0|iel)     is  an extreme point  of    A. 

Proposition 3       Any balanced set  is the union of the minimal 

balanced sets  that  it  contains   [Shapley  [3] p.   10]. 
« 

Proof Any balanced set, ui  is a member of A and hence if co 

is not an extreme point, then by repeated application of the op- 

posite sign property u may be expressed as a convex combina- 

tion of extreme points of A,  i.e. initially we may write 

w = MM    + (l-y)u)(2) where 0 < w < 1,  u^w^e-A  and J1) and 

w^ each have at least one more zero coordinate than w.  Since 

non-zero coordinate positions of w appear among those of J1^ 

or uw,  co  is the union of the balanced sets associated with 

aX1) and u)(2).  The process is now repeated if necessary on u/1) 

and d2)    until extreme points are encountered.  Thus, at the 

conclusion of this process the balanced set associated with w 

will be the union of those associated v/ith the extreme points at 

termination. 

Charnes-Cooper [1] page 2^5. 
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We remark that this "purification" algorithm which incor- 

porates other features  has already been coded and could be 

immediately applied to the problem of decomposing balanced sets 

into unions of minimal balanced sets. 

3.  Characterization of the Core of a Game by Linear Pro^ramminf; 

We observe that any additive function x which is defined 

on N is completely determined by its values on the integers 

1,2,...^.  Furthermore, x is in the core of a game v if and 

only if 

(1)  Yx > V   and   (2)  eTx = v(N)3 where 

Y is the incidence matrix defined above and 

T V =     [vCSj),   v(S2),...,   v(S )]      where we  follow  exactly 
2n-2 

the  same  ordering used to define    Y.     However,     in  order to use 

the  power of linear programming,  we  shall replace  condition    (2) 

by the worker   one,     (2')  e  x >_ v(N)     and construct  the  following 

dual  linear programs  associated with a given game n-person game v: 

(I) 

min T e x 

subject  to     Yx  >  V 
e-'x  > v(N) 

(ID 

max vrV + nv(N) 
(71 m ( 

subject  to    wJY +  ne-1       =  e 
wT >_ 0, n l 0. 

See  Charnes-Kortanek-Raike   [3] 
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Propositlon k    For any n-person game whatever,  problems  (I)  and 

(II) possess  dual optimal  solutions.    The  core  of the game,     v, 

is empty  if and only if for any  optimal solution    x-    to  (I), 

eV  > v(H). 

Proof      For any game    v,     consistency of (I)   is most easily seen 

by observing that    Y    contains  the identity matrix    I      as its 

first    n    rov/s,   and    e    =   (1,1,...,1).     Problem  (II)  is alho con- 
rp 

sistent  as  seen by taking    w    =  0    and    n =  1.     Hence by the dual 

theorem of linear programming there exist dual   (extreme point) 

optimal  solutions  to  (I)   and   (II).   This   completes  the proof of 

the  first  assertion.     For the  second assertion  of the Proposition, 

observe  that  if the  core  is  empty,  then there  is no    x    satisfy- 

ing (1)  and  (2).     Hence at  any  (I)-optlmum,     x-,    we must have 
T e x* >  v(N).     On the other hand,   if at an optimum for  (I), 
T T '? e x^ >  v(N),  then since    ex-  is  a minimum for    e-'-x   üver(l) 

and (2'),  there  is no    x    satisfying (2). 

Actually,  the values  of    n     at extreme points  are quite 

limited as  the  following proposition shows. 

Proposition  5    Let    (Ü,  ^)     be any extreme point  feasible  solu- 

tion to  (II).     Then    ^    is     0    or    1. 

Proof    Since    w  >_ 0,    it  follows  that    crTy >_ 0    and therefore 
— — T n _< 1.  But if 0 < n < 1,  then w = 0, for otherwise there 

T would be at least two distinct ways of expressing e  as a linear 

combination with respect to the set of linearly independent 

vectors associated with the extreme point  (u, n)>  which is a 
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contradiction. Hence n ., 0 or 1. 

Proposition 6 Given any game v) with an empty core) it is al­

ways possible to obtain a. game v' which has non-empty CO!"'e by 

changing at least one value of v. 

Proof If v has an empty core, then at a dual optimum ( xl: · w* n . ) • ' f; J . ., 
for (I) - (II), it follows that e~x 1 > v(N) by Proposition 4. 

Hence by complementary slackness, n= = 0 which impli es 

T 'r w* Y = e • 

The r e fore w* is a minimal balanced collection. Hence v 

may be given a core i mme di a tely simply by changing one i mpu t ation 

alone, name ly by increasing v(N). Q.E.D. 

In considering chane;es in c. game v (havine empty cor<:: ) 

which nay le ad to a game with non-empty core, it may happen in 

some applications that ce rtain of the values of v are required 

to remain un changed. For example, perhaps it may not be possible 

to change the value of v( l ). In such situations we still have 

at our dispo~a l the ve ctor ~* wh i ch ferns a set of dual evalu-

ators fpr change s in V. Since; each component of w* is greater 

than ze ro, it follows that negative marginal chan Ge S in compo-· 

nents of V, i.e. ho e components which are permitte d to be 

ch ange d c.nd co~ras ~ond to components of w*) will effect a 

strict de creas e in the obj ect ive function eTx of (I) 'rhus, 
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the pol<~er of sensitivity analysi~l/ of linear programming may be 
- . . . . 

brought to bear on the problem of rendering games \'tithout core 

to ones \'lhich have non-empty _core. These features can incorporate 

restrictions of the type already m~ntioned, i.e., maintaining 

some of the original game valu~s while permitting others to var,y 

freely, or perhaps subject to other linear inequality constraints. 
~ 

Observe that Propo_si tion 4 is equivalent to Theorem 2 ~ 

p 11 of Shapley [4], which states the necessary and sufficient 

condition for nonernpty core in terms of an upper bound, v(N) for. 

all extreme points of the convex polyhedron A. Clearly, if there 

'I' were an extreme point ~tA satisfying ~ V > v(N), then at any 

dual optimu=n (x*;w*,nu) it follm.,rs that eTxr; !_~Tv> v(N) and 

On the other hand if e'l'xr. > v(N), then n* = 0 im-

plying wi;£ A and e Tx* = w* 'l'v > v(N). Thus Proposition ll is 

completely equivalent to Shapley's Theorem 2. The question of 

emptiness of the core of an n-person game is equivalent to t-.rhethc, r 

the optimal value of problem (I) is strictly greater than v(N) 

or not. 

5. Prope r Ga._1e s and S~arpne"' s of_ Prope~ TUnlmal Balanced Collect ions 

A game is called prope r if the set function v is super ad-

11see Charnes-Cooper [1] and [2] for simultane0us considerations 
of data variations and their prograrnrr.ing consequences. 
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dltive, i.e., 

v(S) + v(T) <. v(SuT)  for all S, Tii.U 

with SHT «0.  A minimal balanced collection is proper if no 

two of its elements are disjoint. Accordingly we identify an 

extreme point ueA as proper if the sets corresponding to the 

rows of Y associated with positive components of w satisfy 

the pairwise intersecting property above. We shall find it con- 

venient to let eT denote the row in Y corresponding to a 

given set T2.N. 

Proposition 7 [Shapley [4], Theorem 33 The proper game v has 

T 
a non-empty core if and only if  u V < v(N) for all proper ex- 

treme points ucA« 

Proof One of the implications is obvious by Proposition 4. We 

now show that it suffices to examine only proper extreme points 

of A by eliminating redundant inequalities of problem (I) with 

respect to a given optimal solution for (I) in a manner which does 

not destroy dual (II) feasibility. To this end, let (x*; w*, n*) 

be a dual optimal solution to problems (I) and (II) respectively, 

where w* = {u£ : 1 <_ k < p},  S = {S.: 1 < k ^ p},  and u^ 

Is the positive weight corresponding to the set S, , 1 <_ k  <_ p. 

To obtain the required reductions, we proceed as follows. Let Q 

be any complement with respect to any set properly containing S. . 

i.e., T = S, uQ, TyS. . V/e examine cases regarding the known 

T 
inequality e^x- >. v(Q). 

T T 
Case 1.  ejx* > v(Q). We may eliminate the inequality eQx >_ v(Q) 

from (I) without affecting dual optimality. 

T — 
Case 2  e0x* = v(Q).  If Q / S, we may eliminate the inequality 
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T eOx 1 v^ without affecting dual optlmallty since  "h" 0' If> 

— T     T      T 
however, Q = S. c S, then v(T) <_ eTx* » e« x* + e« x* » 

ü 

v(Sk) + v(S.) <, v(T), since Skr^ S. » 0, eg x* ■ v(Sk), 
ft 

T 
e„ x* = vCS^) by complementary slackness, and v Is proper. 

J      J 

T 
Hence v(T) « e^x*. Thus, If T « N, then we may eliminate all 

T 
Inequalities from (I) except e x ^ v(N) without affecting op- 

tlmallty of x*. If on the other hand T ^ N, then we may re- 

move the Inequality associated with S.  or S.  (or both) with- 

out affecting dual optlmallty following the Shapley construction 

([^3» p. 1^), where the set T may now be Introduced with ap- 

propriate positive weight. Thus, whether In case 1 or case 2 

above, we may remove Inequalities from (I) which do not affect 

optlmallty of x*, and the process stops when an Inequality sys- 

tem Is attained which corresponds to sets which have palrwlse 

non-empty intersections. Q.E.D. 

Let Y be all the rows of Y which correspond to sets which 

have palrwlse non-empty intersection, and let A be the polyhedron 

associated with the matrix Y.  We shall call the set of extreme 

points of X universal with respect to the property of core 

feasibility of any proper game of corresponding dimension. Thus, 

analogous to Shapley [4], we obtain the smaller set, Ä, which 

is universal for proper games of order n In terms of Proposition 

7.  The question Shapley raises and which we propose to answer is 

whether A Is sharp. I.e. is there yet a smaller set of extreme 

points within A which is universal for proper n-person games? 

Shapley's conjecture In the affirmative appears to be correct as 

we shall now show. 
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lt  will suffice to construct for arbitrary n, a proper 

game which singles out any a priori specified proper extreme 

point FeA such that ü> V > v(N) and üTV <_ v(N) for all 

other extreme points In A- 

Proposition 8  The extreme points of A defined above are 

sharp. In the sense that no proper subset of extreme points of 

A Is a universal set for determining core feasibility of proper 

games of order n. 

T — 
Proof  Let cr « {ws ,...,a)S } be any extreme point of A so 

1 P 
that   §" ■  {Si,...,S  }    Is a proper minimal balanced collection 

T with weights    or . 

Let    Z„    =   {S - S. |S^.S, },      1  < k < p.    Thus,     Zq      is ök K K -     - ök 

the set of complements of    S.     with respect to sets properly 

P 
containing it.     Let    Z =    Ü Z«  •    The values for    v    are assigned 

k«l bk 

as follows: 

^  1       ;    If    SCS 

v(S)  -   <    -u     ;     If    ScZ 

-y+1;     If    S/SU Z    ;    v(0)  = 0, 

where u  >  1    is to be specified later. 

We show that   (1)     v    is well-defined and (2)    v    is  a proper 

game. 

L emma 1  v as defined above is a well-defined function on sub- 

sets of N. 

Proof  It suffices to show that Sn Z = 0. Suppose not, i.e. 
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SeZe      and    S ■ S,.    Then there exists    Q    such that    Q£SU    and 
•Si,. j K 

"■ m 

Q - Sk * S..    But    S^n S^  ^ 0    since    iff      is proper and there- 

fore    Q " Sir :s ^1    is imPossit)le' 

Lemma    2      v    is a proper game. 

Proof      Let    Q    and    R    be any non-empty subsets  of   N    and 

QH R * 0.     We must  show    v(Q)   + v(R) ^vCQijR). 

Case 1      Q    or    R    in    S".    First,  observe that not both    Q    and 

R    in    S";  otherwise we contradict properness of    cr.    Thus,    we 

may assume    Q « S^zS    and    R/S.    But    R = QuR - Q    since 

QOR » 0,     and this implies that    ReZ«  .    Hence    v(R) = -v,    and 

v(Q) + v(R)  = 1-M.     Claim now that    QuR ^ S"u^»    On the contrary, 

if   Qu ReS,    then we can make    R    a member of    S    by simply 

transferring the weight of    Qu R    to    Q    and to    R,    eliminat- 

ing QuR    from    S.     This  is  a  contradiction since    Rj^S.     Thus, 

QuR^S.    We show now that    QU R ^7.    If to the  contrary 

QUR eZ,    say    QuR eZ then there exists    T^S,    for some 

J     such    that    T - S.  s Qu^ - ^v^^    which again is impossible 

since    S.nS^ ^ 0    for any    J.    Hence    Qu R / ^ U Z,    and there- 

fore    v(Qu R)  s -u + 1.     Hence    v(Q)  + v(R) = 1 -  u ^vCQuR) 

= -u + 1. 

Case 2    Q/5"    and    R^S.     If    QUR j^ Z,    then 

v(Q)  + v(R)   <. -2y +  2 <^ -y  +  1 <_ v(Qu R),    since    y > 1.     On the 

other hand,     if    Qu R e  Z",     say    Qu R e  Z«  ,    then there exists 
^k 

T^Sk such that T - Sk * QU R. But this implies T - Sk - Q = R 
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slnce Qr^ R = 0, which Implies RcZc . Similarly, we conclude 
bk 

S e Zc . Hence v(Q) + v(R) = -2y < -y = v(QuR). Thus 
Sk 

in all cases v(Q) + v(R) < v(QuR), for Q, R^N with 

QHR = 0.    Therefore, v is superadditive and therefore a proper 

game. 

Observe that N = {l,2,...,n} ^ SUZ and therefore v(N) 

e -p + 1.  Clearly increasing the value of v(N) will not destroy 

the properness of the game v.  Therefore we may and do redefine 

v(N) = 0. 

6« Determination of a Value for y 

Let wi = tun ,.. . ,ult^ ),. . ., u^ = Nki' * * * ,(l)kt(k)^ 

be all the extreme points of A other than ü, where for each 

i,  1 5 i 4 k,  it follows that 1 £ k(i) £ n since n is the 

rank of Y.  Let a = minloK.)  and a. = u..   + ... + tu.^/^ 
i > J 

for 1 1 i 1 k.  Then a > 0 and there exists real y > 1 such 

that 
(y-l)a ^ o.   for all i,  1 1 1 1 k 

—      „        T— 
Lemma 3  If wi e A  w^u, then  w^^V <_ 0. 

Proof  Given w. ¥ Zi,    then wiv 1 o^^ + (-y + Dw^^^  for some J, 

1 <_ j < t(i)  since at least one positive component of u.     cor- 

responds to a subset of N not in S,  i.e., a subset in Z or 
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not In SuZ" with game value <_ -u + 1. But 

o1 + (-u+Dw.. £ Oj^ + (-u+l)o £ 0  since u^, >^ o > 0 and 

y > 1. Hence uiV <_ 0 for each u.e Ä,  u. j^ w. Q.E.D. 

We complete the proof of Proposition 8 by observing that is^V    Is 

simply the sum of Its positive components, and therefore orV > 0 

» ^(N). Hence for our a priori specified extreme point u EA , 

we have constructed a proper game which In terms of linear pro- 

gramming problem (II), has a functional value > v(N) at w, 

while for all other extreme points In A, the (Il)-functlonal 

value Is <_ v(N). Thus, the core of the game Is empty, and It 

Is precisely the proper extreme point U and this point alone 

which satisfies the condition o^V > v(N). 

7. Redunaancy, Growth CordltionSj and the Farkas-Mlnkowskl Property 

In discussing Proposition 7 above, we discovered that for 

any proper game It Is necessary to examine only proper extreme 

points in order to ascertain the existence of a core. The tech- 

nique of proof was to show that with respect to an optimal solu- 

tion xÄ of problem (I), certain Inequalities could be deleted 

from (I) without affecting the optlmallty of x*, until a sys- 

tem of Inequalities remained whose corresponding sets satisfied 

the palrwise non-intersecting property.  In general, however, the 

inequalities which are deleted are not of themselves redundant, 

^•e., any one of these may not be a consequence of some subsys- 
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tem of Inequalities.  It is possible for a proper game to have 

no redundant inequalities.  In this section we characterize re- 

dundancy by introducing a natural ordering of values of the game 

corresponding to increasing subsets of N,  which for positive 

games induces a partial ordering on subsets of N. 

Proposition 9  For any S C N , esx >_ v(S)  can only be the 

impllcand of inequalities of the form 

T 
CQX^VCQ),  where QOS. 

T T 
Proof  Assume esx ^ v(S) whenever e^x >_ v(Q)  for Q ^ S 

QeQ,  a collection of subsets in N. Then by the Farkas-Minkowskj 

Theorem, there exists A ^ 0 such that es = Je^X and 
Q w y 

v(S) < yv(Q)xn. But :.ince  X^ > 0 and e,, consists of zeros and 
- Q  y        Q -     y 

ones, any positive positions in any e0 outside of coordinate 

positions corresponc'.-' i-; to S could never be annihilated, and 

therefove would contrr.Jict the expression of e„,    Kence QC S. 

Proposition 10 (Chaiacterization of Redundancy)  Max V vnX > 
QtS y ^ 

subject to   V cnxn  = ec, xn  >  0    exists and is denoted by 
Qcs Q Q   b   Q ~ 

M(S).  e-gX >_ v(3) is redundant if and only if v(S) <_ M(S). 

T T 
Proof  If esx > v(S)  is redundant,  then e„x  >_  v(S) whenever 

T 
eQx >_ v(Q),  QC S.  Hence,  for problem  (Ig) with dual (113) 

below,  do) is consistent and bounded below. 
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(Is) (IIS) 

T mln    esx max Jv(Q)xQ 
Q w 

T s.t.    eQx >_ v(Q),    QCS s.t.   yeQAQ « es 

By the Farkas-Mlnkowskl Theorem,  there exists feasible    XQ    such 

that    v(S) £ I
V
^)

X
Q 1 M(S), proving the  first implication.    On 

the other hand suppose    v(S)  <_ M(S).    Then by dual optimality» 
rp 

for any x satisfying e"x > v(Q), Q -C S, it follows that y    — -•« 

T eSx - M^S^ - v(s^    which proves redundancy.    Q.E.D. 

Proposition 11.     If the game    v    is not  strictly proper,  then 

there exists  at  least  one redundant  inequality. 

Proof      Suppose no constraint is  redundant.    Then for any    SdN, 

v(S)   > M(S)    by  Proposition 10.     In particular for any    Q,  R, 

QH R = 0, we have 

v(Qu R) > ri(QUR)   >  v(Q)   + v(R).     Q.E.D. 

Remark  There are strictly proper games, however, that have re- 

dundant constraints. 

Proposition 12  The operator M defined on a proper game is 

itself proper, i.e. given Si, S2,  81^32 s 0, then 

M(Si) + M(S2) 1 M(SiU S2) 

Proof  Consider the two problems. 
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(IIT) II 
(Si   2) 

Max      I   v(R)X 
RC T R 

S,t*   RIT
6
^ * eT 

X
R^0 

Max      I    v(Q)Xn +       I    v(P)Xp 
Q-cS, w      PO S2 

5•t•   QIS.V^P^VP^T 

XQ   XP  1  0 

where    T = Sl\.)S2.     Clearly the optimal value of    (11«       )    is 
01»2 

MCSj) + M(S2)  since S1nS2 = 0.  However, following the Shapley 

[4] (p. Ik)   construction, we can do better by transferring weights 

to move into problem (IIT). Specifically, in considering terms 

v(Q)xQ + v(P)Xp of (Ilg  ), if XQ = Xp we set R = Qu P and 

XR = XQ + Xp to obtain a possibly bigger solution for (Ilm). 

If XQ > Xp, then assign weight Xp to v(T) and XQ - Xp to 

v(Q) and delete Op, to obtain an improved solution for (Ilm)• 

Therefore M(T) >_ M(S1) + M(S2). 

Corollary  If v takes on positive values, then the operator 

M induces a partial ordering on subsets of N, given by 

RC S nM  < M(S). 

An Example 

We return to the game constructed in the proof of Proposi- 

tion 8 and with slight changes exhibit a strictly proper game with 

no redundant inequalities. Here, let S = {S. : 1 <_ J £ n} with 

we ights xs = ~j>    where S. = M - {j|. Then for any subset 
J 
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QCN, QCS.  for some j.  But this Implies Q i S (other- 

wise transfer weights as usual to obtain a contradiction on mini- 
— T mality of S). Claim that e„x  ^ v(s) is not redundant, where 

SCN. Clearly th.is is true if S consists of one element. If 

S has more than one element, then S d Z    In  addition to 

S / S. Hence by definition v(S) = -y + 1. Now consider M(S) 

determined by max \      v(Q)XQ, subject to   I     e0xQ = eq, 
QCS     y QCSW'W 

Xn > 0. Clearly, yx0 > 1  for any feasible solution, and 
w — ö 

v(Q) 5 -y + 1 since Q / S.  Therefore 

M(S) = Iv(Q)x« < (-W+DJA* < -y + 1 = v(S) at an optimum. Hence, 

T eSx - v^^  is not redundant by Proposition 10.  Finally, upon 

setting  v(N) = Jv(Sj)xs = H^I + 6j for some 6>0>    ^  fo1- 
j 

T lows that e x >_ v(N) is also not redundant. By choice of 

y > 1,  yv(Q)x0 ^0 on all extreme points except S, and 
—    n the maximum achieved at S,  ~ZT>    is strictly less than v(M). 

It is easy to check that v as defined is strictly proper.  In 

fact, in case 2 of the proof of Proposition 8 we already have 

strict inequality. In case 1, we see now that if Q = S, e S, 

and R / S,  QHR ^ 0, then Qu R = N and 

v(Q) + v(R) =l-y+l<0< v(M)  and strict inequality occurs 

in this case also. Hence v is strictly proper, has no redun- 

dant inequalities, and by the redefinition of v(N) has non- 

empty core. 



-19- 

Thus, the sequence  {M(S): SC N } permits a sequential desig- 

nation of values of a game suc.i that If v(S) > M(S), no inequali- 

ties are redundant.  The sequence, any member of which depends 

on previous game values, expresses the rate of growth as a lower 

bound for successive game values corresponding to larger and larg- 

er subsets of the collection of N players which vitiates any 

possibility of constraint redundancy. 
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